Lineage specific composition of cyclin D–CDK4/CDK6–p27 complexes reveals distinct functions of CDK4, CDK6 and individual D-type cyclins in differentiating cells of embryonic origin

نویسندگان

  • V Bryja
  • J Pacherník
  • J Vondráček
  • K Souček
  • L Čajánek
  • V Horvath
  • Z Holubcová
  • P Dvořák
  • A Hampl
چکیده

OBJECTIVES This article is to study the role of G(1)/S regulators in differentiation of pluripotent embryonic cells. MATERIALS AND METHODS We established a P19 embryonal carcinoma cell-based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G(1)/S regulators were analysed with respect to growth and differentiation parameters of the cells. RESULTS AND CONCLUSIONS We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E-CDK2 but not of cyclin D-CDK4/6-p27 complexes. In an exponentially growing P19 cell population, the cyclin D1-CDK4 complex is detected, which is replaced by cyclin D2/3-CDK4/6-p27 complex following density arrest. During endodermal differentiation kinase-inactive cyclin D2/D3-CDK4-p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2-CDK4-p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D-CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G(1)/S transition-regulating machinery in early embryonic cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors.

The D-type cyclins and their major kinase partners CDK4 and CDK6 regulate G0-G1-S progression by contributing to the phosphorylation and inactivation of the retinoblastoma gene product, pRB. Assembly of active cyclin D-CDK complexes in response to mitogenic signals is negatively regulated by INK4 family members. Here we show that although all four INK4 proteins associate with CDK4 and CDK6 in v...

متن کامل

Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6.

D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7, interacted with cellular and viral D cyclins a...

متن کامل

Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System

Selective recruitment of protein kinases to the Hsp90 system is mediated by the adaptor co-chaperone Cdc37. We show that assembly of CDK4 and CDK6 into protein complexes is differentially regulated by the Cdc37-Hsp90 system. Like other Hsp90 kinase clients, binding of CDK4/6 to Cdc37 is blocked by ATP-competitive inhibitors. Cdc37-Hsp90 relinquishes CDK6 to D3- and virus-type cyclins and to INK...

متن کامل

Unexpected Outcomes of CDK4/6 Inhibition

The response of cells to extracellular mitogenic signals and commitment to enter G1 phase, are regulated by the D-type cyclins (D1, D2 and D3). Once induced they heterodimerize with and activate either cyclin dependent kinase 4 or 6 (CDK4 or CDK6). Cyclin D-CDK4 and D-CDK6 kinases phosphorylate and inactivate the retinoblastoma family of proteins, leading to release and derepression of E2F tran...

متن کامل

Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta.

G1 progression in mammalian cells requires the activity of the cyclin D-dependent kinases Cdk4 and/or Cdk6 and the cyclin E-dependent kinase Cdk2. Proliferating Mv1Lu mink lung epithelial cells and human keratinocytes contain high levels of the universal Cdk inhibitor p27Kip1 distributed in complexes with Cdk2, Cdk4, and Cdk6. Addition of the antimitogenic cytokine transforming growth factor-be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell Proliferation

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2008